TOPIRAMATE capsule アメリカ合衆国 - 英語 - NLM (National Library of Medicine)

topiramate capsule

aurobindo pharma limited - topiramate (unii: 0h73wjj391) (topiramate - unii:0h73wjj391) - topiramate capsules are indicated as initial monotherapy for the treatment of partial-onset or primary generalized tonic-clonic seizures in patients 2 years of age and older. topiramate capsules are indicated as adjunctive therapy for the treatment of partial-onset seizures, primary generalized tonic-clonic seizures, and seizures associated with lennox-gastaut syndrome in patients 2 years of age and older. topiramate capsules are indicated for the preventive treatment of migraine in patients 12 years of age and older. none. pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to topiramate  during pregnancy. patients should be encouraged to enroll in the north american antiepileptic drug (naaed) pregnancy registry if they become pregnant. this registry is collecting information about the safety of antiepileptic drugs during pregnancy. to enroll, patients can call the toll-free number 1-888-233-2334. information about the north american drug pregnancy registry can be found at http://www.aedpregnancyregistry.org/. risk summary topiramate  can cause fetal harm when administered to a pregnant woman. data from pregnancy registries indicate that infants exposed to topiramate in utero have an increased risk of major congenital malformations, including but not limited to cleft lip and/or cleft palate (oral clefts), and of being small for gestational age (sga) [see human data] . sga has been observed at all doses and appears to be dose-dependent. the prevalence of sga is greater in infants of women who received higher doses of topiramate during pregnancy. in addition, the prevalence of sga in infants of women who continued topiramate use until later in pregnancy is higher compared to the prevalence in infants of women who stopped topiramate use before the third trimester. in multiple animal species, topiramate produced developmental toxicity, including increased incidences of fetal malformations, in the absence of maternal toxicity at clinically relevant doses [see animal data] . all pregnancies have a background risk of birth defects, loss, or other adverse outcomes. the estimated background risk of major birth defects and miscarriage for the indicated population is unknown. in the u.s. general population, the estimated background risks of major birth defects and miscarriage in clinically recognized pregnancies are 2 to 4% and 15 to 20%, respectively. clinical considerations fetal/neonatal adverse reactions consider the benefits and risks of topiramate when prescribing this drug to women of childbearing potential, particularly when topiramate is considered for a condition not usually associated with permanent injury or death. because of the risk of oral clefts to the fetus, which occur in the first trimester of pregnancy, all women of childbearing potential should be informed of the potential risk to the fetus from exposure to topiramate. women who are planning a pregnancy should be counseled regarding the relative risks and benefits of topiramate use during pregnancy, and alternative therapeutic options should be considered for these patients. labor or delivery although the effect of topiramate on labor and delivery in humans has not been established, the development of topiramate-induced metabolic acidosis in the mother and/or in the fetus might affect the fetus ability to tolerate labor. topiramate treatment can cause metabolic acidosis [see warnings and precautions (5.4)]. the effect of topiramate-induced metabolic acidosis has not been studied in pregnancy; however, metabolic acidosis in pregnancy (due to other causes) can cause decreased fetal growth, decreased fetal oxygenation, and fetal death, and may affect the fetus’ ability to tolerate labor. pregnant patients should be monitored for metabolic acidosis and treated as in the nonpregnant state [see warnings and precautions (5.4)]. newborns of mothers treated with topiramate  should be monitored for metabolic acidosis because of transfer of topiramate to the fetus and possible occurrence of transient metabolic acidosis following birth. based on limited information, topiramate has also been associated with pre-term labor and premature delivery. data human data data from pregnancy registries indicate an increased risk of major congenital malformations, including but not limited to oral clefts in infants exposed to topiramate during the first trimester of pregnancy. other than oral clefts, no specific pattern of major congenital malformations or grouping of major congenital malformation types were observed. in the naaed pregnancy registry, when topiramate-exposed infants with only oral clefts were excluded, the prevalence of major congenital malformations (4.1%) was higher than that in infants exposed to a reference aed (1.8%) or in infants with mothers without epilepsy and without exposure to aeds (1.1%). the prevalence of oral clefts among topiramate-exposed infants (1.4%) was higher than the prevalence in infants exposed to a reference aed (0.3%) or the prevalence in infants with mothers without epilepsy and without exposure to aeds (0.11%). it was also higher than the background prevalence in united states (0.17%) as estimated by the centers for disease control and prevention (cdc). the relative risk of oral clefts in topiramate-exposed pregnancies in the naaed pregnancy registry was 12.5 (95% confidence interval [ci]5.9 to 26.37) as compared to the risk in a background population of untreated women. the uk epilepsy and pregnancy register reported a prevalence of oral clefts among infants exposed to topiramate monotherapy (3.2%) that was 16 times higher than the background rate in the uk (0.2%). data from the naaed pregnancy registry and a population-based birth registry cohort indicate that exposure to topiramate in utero is associated with an increased risk of sga newborns (birth weight <10th percentile). in the naaed pregnancy registry, 19.7% of topiramate-exposed newborns were sga compared to 7.9% of newborns exposed to a reference aed and 5.4% of newborns of mothers without epilepsy and without aed exposure. in the medical birth registry of norway (mbrn), a population-based pregnancy registry, 25% of newborns in the topiramate monotherapy exposure group were sga compared to 9 % in the comparison group unexposed to aeds. the long-term consequences of the sga findings are not known. animal data when topiramate (0, 20, 100, or 500 mg/kg/day) was administered to pregnant mice during the period of organogenesis, incidences of fetal malformations (primarily craniofacial defects) were increased at all doses. fetal body weights and skeletal ossification were reduced at the highest dose tested in conjunction with decreased maternal body weight gain. a no-effect dose for embryofetal developmental toxicity in mice was not identified. the lowest dose tested, which was associated with increased malformations, is less than the maximum recommended human dose (mrhd) for epilepsy (400 mg/day) or migraine (100 mg/day) on a body surface area (mg/m2 ) basis. in pregnant rats administered topiramate (0, 20, 100, and 500 mg/kg/day or 0, 0.2, 2.5, 30, and 400 mg/kg/day) orally during the period of organogenesis, the frequency of limb malformations (ectrodactyly, micromelia, and amelia) was increased in fetuses at 400 and 500 mg/kg/day. embryotoxicity (reduced fetal body weights, increased incidences of structural variations) was observed at doses as low as 20 mg/kg/day. clinical signs of maternal toxicity were seen at 400 mg/kg/day and above, and maternal body weight gain was reduced at doses of 100 mg/kg/day or greater. the no-effect dose (2.5 mg/kg/day) for embryofetal developmental toxicity in rats is less than the mrhd for epilepsy or migraine on a mg/m2 basis. in pregnant rabbits administered topiramate (0, 20, 60, and 180 mg/kg/day or 0, 10, 35, and 120 mg/kg/day) orally during organogenesis, embryofetal mortality was increased at 35 mg/kg/day, and increased incidences of fetal malformations (primarily rib and vertebral malformations) were observed at 120 mg/kg/day. evidence of maternal toxicity (decreased body weight gain, clinical signs, and/or mortality) was seen at 35 mg/kg/day and above. the no-effect dose (20 mg/kg/day) for embryofetal developmental toxicity in rabbits is equivalent to the mrhd for epilepsy and approximately 4 times the mrhd for migraine on a mg/m2 basis. when topiramate (0, 0.2, 4, 20, and 100 mg/kg/day or 0, 2, 20, and 200 mg/kg/day) was administered orally to female rats during the latter part of gestation and throughout lactation, offspring exhibited decreased viability and delayed physical development at 200 mg/kg/day and reductions in pre- and/or postweaning body weight gain at 2 mg/kg/day and above. maternal toxicity (decreased body weight gain, clinical signs) was evident at 100 mg/kg/day or greater. in a rat embryofetal development study which included postnatal assessment of offspring, oral administration of topiramate (0, 0.2, 2.5, 30, and 400 mg/kg) to pregnant animals during the period of organogenesis resulted in delayed physical development in offspring at 400 mg/kg/day and persistent reductions in body weight gain in offspring at 30 mg/kg/day and higher. the no-effect dose (0.2 mg/kg/day) for pre- and postnatal developmental toxicity in rats is less than the mrhd for epilepsy or migraine on a mg/m2 basis. risk summary topiramate is excreted in human milk [see data]. the effects of topiramate on milk production are unknown. diarrhea and somnolence have been reported in breastfed infants whose mothers receive topiramate treatment. the developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for topiramate  and any potential adverse effects on the breastfed infant from topiramate   or from the underlying maternal condition. data human data limited data from 5 women with epilepsy treated with topiramate during lactation showed drug levels in milk similar to those in maternal plasma. contraception women of childbearing potential who are not planning a pregnancy should use effective contraception because of the risk of major congenital malformations, including oral clefts, and the risk of infants being sga  [see drug interactions (7.4) and use in specific populations 8.1] . adjunctive treatment for epilepsy pediatric patients 2 years of age and older the safety and effectiveness of topiramate as adjunctive therapy for the treatment of partial-onset seizures, primary generalized tonic-clonic seizures, or seizures associated with lennox-gastaut syndrome have been established in pediatric patients 2 years of age and older [see adverse reactions (6.1) and clinical studies (14.2)] . pediatric patients below the age of 2 years safety and effectiveness in patients below the age of 2 years have not been established for the adjunctive therapy treatment of partial-onset seizures, primary generalized tonic-clonic seizures, or seizures associated with lennox-gastaut syndrome. in a single randomized, double-blind, placebo-controlled investigational trial, the efficacy, safety, and tolerability of topiramate oral liquid and sprinkle formulations as an adjunct to concurrent antiepileptic drug therapy in pediatric patients 1 to 24 months of age with refractory partial-onset seizures were assessed. after 20 days of double-blind treatment, topiramate (at fixed doses of 5, 15, and 25 mg/kg/day) did not demonstrate efficacy compared with placebo in controlling seizures. in general, the adverse reaction profile for topiramate in this population was similar to that of older pediatric patients, although results from the above controlled study and an open-label, long-term extension study in these pediatric patients 1 to 24 months old suggested some adverse reactions/toxicities (not previously observed in older pediatric patients and adults; i.e., growth/length retardation, certain clinical laboratory abnormalities, and other adverse reactions/toxicities that occurred with a greater frequency and/or greater severity than had been recognized previously from studies in older pediatric patients or adults for various indications). these very young pediatric patients appeared to experience an increased risk for infections (any topiramate dose 12%, placebo 0%) and of respiratory disorders (any topiramate dose 40%, placebo 16%). the following adverse reactions were observed in at least 3% of patients on topiramate and were 3% to 7% more frequent than in patients on placebo: viral infection, bronchitis, pharyngitis, rhinitis, otitis media, upper respiratory infection, cough, and bronchospasm. a generally similar profile was observed in older pediatric patients [see adverse reactions (6)] . topiramate resulted in an increased incidence of patients with increased creatinine (any topiramate dose 5%, placebo 0%), bun (any topiramate dose 3%, placebo 0%), and protein (any topiramate dose 34%, placebo 6%), and an increased incidence of decreased potassium (any topiramate dose 7%, placebo 0%). this increased frequency of abnormal values was not dose-related. creatinine was the only analyte showing a noteworthy increased incidence (topiramate 25 mg/kg/day 5%, placebo 0%) of a markedly abnormal increase. the significance of these findings is uncertain. topiramate treatment also produced a dose-related increase in the percentage of patients who had a shift from normal at baseline to high/increased (above the normal reference range) in total eosinophil count at the end of treatment. the incidence of these abnormal shifts was 6 % for placebo, 10% for 5 mg/kg/day, 9% for 15 mg/kg/day, 14% for 25 mg/kg/day, and 11% for any topiramate dose. there was a mean dose-related increase in alkaline phosphatase. the significance of these findings is uncertain. topiramate produced a dose-related increased incidence of hyperammonemia [see warnings and precautions (5.12)] . treatment with topiramate for up to 1 year was associated with reductions in z scores for length, weight, and head circumference [see warnings and precautions (5.4), adverse reactions (6)] . in open-label, uncontrolled experience, increasing impairment of adaptive behavior was documented in behavioral testing over time in this population. there was a suggestion that this effect was dose-related. however, because of the absence of an appropriate control group, it is not known if this decrement in function was treatment-related or reflects the patient’s underlying disease (e.g., patients who received higher doses may have more severe underlying disease) [see warnings and precautions (5.6)] . in this open-label, uncontrolled study, the mortality was 37 deaths/1000 patient years. it is not possible to know whether this mortality rate is related to topiramate treatment, because the background mortality rate for a similar, significantly refractory, young pediatric population (1 to 24 months) with partial epilepsy is not known. monotherapy treatment for epilepsy pediatric patients 2 years of age and older    the safety and effectiveness of topiramate as monotherapy for the treatment of partial-onset seizures or primary generalized tonic-clonic seizures have been established in pediatric patients aged 2 years and older [see adverse reactions (6.1), clinical studies (14.1)] .  a one-year, active-controlled, open-label study with blinded assessments of bone mineral density (bmd) and growth in pediatric patients 4 to 15 years of age, including 63 patients with recent or new onset of epilepsy, was conducted to assess effects of topiramate (n=28, 6 to 15 years of age) versus levetiracetam (n=35, 4 to 15 years of age) monotherapy on bone mineralization and on height and weight, which reflect growth. effects on bone mineralization were evaluated via dual-energy x-ray absorptiometry and blood markers. table 10 summarizes effects of topiramate at 12 months for key safety outcomes including bmd, height, height velocity, and weight. all least square mean values for topiramate and the comparator were positive. therefore, the least square mean treatment differences shown reflect a topiramate-induced attenuation of the key safety outcomes. statistically significant effects were observed for decreases in bmd (and bone mineral content) in lumbar spine and total body less head and in weight. subgroup analyses according to age demonstrated similar negative effects for all key safety outcomes (i.e., bmd, height, weight). table 10 summary of topiramate treatment difference results at 12 months for key safety outcomes *     tblh=total body less head **    whereas no patients were randomized to 2 to 5 year age subgroup for topiramate, 5 patients (4 to 5 years) were randomized to the active control group. metabolic acidosis (serum bicarbonate < 20 meq/l) was observed in all topiramate-treated patients at some time in the study [see warnings and precautions (5.4)] . over the whole study, 76% more topiramate-treated patients experienced persistent metabolic acidosis (i.e. 2 consecutive visits with or final serum bicarbonate < 20 meq/l) compared to levetiracetam - treated patients. over the whole study, 35% more topiramate-treated patients experienced a markedly abnormally low serum bicarbonate (i.e., absolute value < 17 meq/l and ≥ 5 meq/l decrease from pre-treatment), indicating the frequency of more severe metabolic acidosis, compared to levetiracetam -treated patients. the decrease in bmd at 12 months was correlated with decreased serum bicarbonate, suggesting that metabolic acidosis was at least a partial factor contributing to this adverse effect on bmd. topiramate-treated patients exhibited an increased risk for developing an increased serum creatinine and an increased serum glucose above the normal reference range compared to control patients. pediatric patients below the age of 2 years safety and effectiveness in patients below the age of 2 years have not been established for the monotherapy treatment of epilepsy. preventive treatment of migraine pediatric patients 12 to 17 years of age safety and effectiveness of topiramate for the preventive treatment of migraine was studied in 5 double-blind, randomized, placebo-controlled, parallel-group trials in a total of 219 pediatric patients, at doses of 50 to 200 mg/day, or 2 to 3 mg/kg/day. these comprised a fixed dose study in 103 pediatric patients 12 to 17 years of age [see clinical studies (14.3)] , a flexible dose (2 to 3 mg/kg/day), placebo-controlled study in 157 pediatric patients 6 to 16 years of age (including 67 pediatric patients 12 to 16 years of age), and a total of 49 pediatric patients 12 to 17 years of age in 3 studies for the preventive treatment of migraine primarily in adults. open-label extension phases of 3 studies enabled evaluation of long-term safety for up to 6 months after the end of the double-blind phase. efficacy of topiramate for the preventive treatment of migraine in pediatric patients 12 to 17 years of age is demonstrated for a 100 mg daily dose in study 13 [see clinical studies (14.3)]. efficacy of topiramate (2 to 3 mg/kg/day) for the preventive treatment of migraine was not demonstrated in a placebo-controlled trial of 157 pediatric patients (6 to 16 years of age) that included treatment of 67 pediatric patients (12 to 16 years of age) for 20 weeks. in the pediatric trials (12 to 17 years of age) in which patients were randomized to placebo or a fixed daily dose of topiramate, the most common adverse reactions with topiramate that were seen at an incidence higher (≥5%) than in the placebo group were: paresthesia, upper respiratory tract infection, anorexia, and abdominal pain [see adverse reactions (6)] . the most common cognitive adverse reaction in pooled double-blind studies in pediatric patients 12 to 17 years of age was difficulty with concentration/attention [see warnings and precautions (5.6)]. markedly abnormally low serum bicarbonate values indicative of metabolic acidosis were reported in topiramate-treated pediatric migraine patients [see warnings and precautions (5.4)] . in topiramate-treated pediatric patients (12 to 17 years of age) compared to placebo-treated patients, abnormally increased results were more frequent for creatinine, bun, uric acid, chloride, ammonia, total protein, and platelets. abnormally decreased results were observed with topiramate vs placebo treatment for phosphorus and bicarbonate [see adverse reactions (6.1)] . notable changes (increases and decreases) from baseline in systolic blood pressure, diastolic blood pressure, and pulse were observed occurred more commonly in pediatric patients treated with topiramate compared to pediatric patients treated with placebo [see clinical pharmacology (12.2)]. pediatric patients below the age of 12 years safety and effectiveness in pediatric patients below the age of 12 years have not been established for the preventive treatment of migraine. in a double-blind study in 90 pediatric patients 6 to 11 years of age (including 59 topiramate-treated and 31 placebo patients), the adverse reaction profile was generally similar to that seen in pooled double-blind studies of pediatric patients 12 to 17 years of age. the most common adverse reactions that occurred in topiramate-treated pediatric patients 6 to 11 years of age, and at least twice as frequently than placebo, were gastroenteritis (12% topiramate, 6% placebo), sinusitis (10% topiramate, 3% placebo), weight loss (8% topiramate, 3% placebo) and paresthesia (7% topiramate, 0% placebo). difficulty with concentration/attention occurred in 3 topiramate-treated patients (5%) and 0 placebo-treated patients. the risk for cognitive adverse reaction was greater in younger patients (6 to 11 years of age) than in older patients (12 to 17 years of age) [see warnings and precautions (5.6)] . juvenile animal studies when topiramate (0, 30, 90, and 300 mg/kg/day) was administered orally to rats during the juvenile period of development (postnatal days 12 to 50), bone growth plate thickness was reduced in males at the highest dose. the no-effect dose (90 mg/kg/day) for adverse developmental effects is approximately 2 times the maximum recommended pediatric dose (9 mg/kg/day) on a body surface area (mg/m2 ) basis. in clinical trials, 3% of patients were over age 60. no age-related differences in effectiveness or adverse effects were evident. however, clinical studies of topiramate did not include sufficient numbers of subjects age 65 and over to determine whether they respond differently than younger subjects. dosage adjustment may be necessary for elderly with age-related renal impairment (creatinine clearance rate <70 ml/min/1.73 m2 ) resulting in reduced clearance [see dosage and administration (2.5), clinical pharmacology (12.3)] . the clearance of topiramate is reduced in patients with moderate (creatinine clearance 30 to 69 ml/min/1.73 m2 ) and severe (creatinine clearance <30 ml/min/1.73 m2 ) renal impairment. a dosage adjustment is recommended in patients with moderate or severe renal impairment [see dosage and administration (2.5), clinical pharmacology (12.3)] . topiramate is cleared by hemodialysis at a rate that is 4 to 6 times greater than in a normal individual. a dosage adjustment may be required [see dosage and administration (2.6), clinical pharmacology (12.3)].

PIOGLITAZONE HYDROCHLORIDE tablet アメリカ合衆国 - 英語 - NLM (National Library of Medicine)

pioglitazone hydrochloride tablet

aurobindo pharma limited - pioglitazone hydrochloride (unii: jqt35npk6c) (pioglitazone - unii:x4ov71u42s) - pioglitazone 15 mg - monotherapy and combination therapy pioglitazone tablets are indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus in multiple clinical settings [see clinical studies (14)] . important limitations of use pioglitazone tablets exert its antihyperglycemic effect only in the presence of endogenous insulin. pioglitazone tablets should not be used to treat type 1 diabetes or diabetic ketoacidosis, as it would not be effective in these settings. use caution in patients with liver disease [see warnings and precautions (5.3)] . - initiation in patients with established nyha class iii or iv heart failure [see boxed warning]. -  use in patients with known hypersensitivity to pioglitazone or any other component of pioglitazone tablets. risk summary limited data with pioglitazone in pregnant women are not sufficient to determine a drug-associated risk for major birth defects or miscarriage. there are risks to the mother and fetus associated

NAPROXEN tablet アメリカ合衆国 - 英語 - NLM (National Library of Medicine)

naproxen tablet

aurobindo pharma limited - naproxen (unii: 57y76r9atq) (naproxen - unii:57y76r9atq) - naproxen 250 mg - naproxen tablets are indicated for: the relief of the signs and symptoms of: - rheumatoid arthritis - osteoarthritis - ankylosing spondylitis - polyarticular juvenile idiopathic arthritis - tendonitis - bursitis - acute gout the management of: - pain - primary dysmenorrhea naproxen tablets are contraindicated in the following patients: - known hypersensitivity (e.g., anaphylactic reactions and serious skin reactions) to naproxen or any components of the drug product [see warnings and precautions (5.7, 5.9)] - history of asthma, urticaria, or other allergic-type reactions after taking aspirin or other nsaids. severe, sometimes fatal, anaphylactic reactions to nsaids have been reported in such patients [see warnings and precautions (5.7, 5.8)] - in the setting of coronary artery bypass graft (cabg) surgery [see warnings and precautions (5.1)] risk summary   use of nsaids, including naproxen, can cause premature closure of the fetal ductus arteriosus and fetal renal dysfunction leading to oligohydramnios and, in some cases, neonatal renal impairment. because of these risks, limit dose and duration of naproxen use between about 20 and 30 weeks of gestation, and avoid naproxen use at about 30 weeks of gestation and later in pregnancy (see clinical considerations, data). premature closure of fetal ductus arteriosus use of nsaids, including naproxen, at about 30 weeks gestation or later in pregnancy increases the risk of premature closure of the fetal ductus arteriosus. oligohydramnios/neonatal renal impairment use of nsaids at about 20 weeks gestation or later in pregnancy has been associated with cases of fetal renal dysfunction leading to oligohydramnios, and in some cases, neonatal renal impairment. data from observational studies regarding other potential embryofetal risks of nsaid use in women in the first or second trimesters of pregnancy are inconclusive. in animal reproduction studies in rats, rabbits, and mice no evidence of teratogenicity or fetal harm when naproxen was administered during the period of organogenesis at doses 0.13, 0.26, and 0.6 times the maximum recommended human daily dose of 1500 mg/day, respectively [see data ]. based on animal data, prostaglandins have been shown to have an important role in endometrial vascular permeability, blastocyst implantation, and decidualization. in animal studies, administration of prostaglandin synthesis inhibitors such as naproxen, resulted in increased pre- and post-implantation loss. prostaglandins also have been shown to have an important role in fetal kidney development. in published animal studies, prostaglandin synthesis inhibitors have been reported to impair kidney development when administered at clinically relevant doses. the estimated background risk of major birth defects and miscarriage for the indicated population(s) is unknown. all pregnancies have a background risk of birth defect, loss, or other adverse outcomes. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively. clinical considerations fetal/neonatal adverse reactions premature closure of fetal ductus arteriosus: avoid use of nsaids in women at about 30 weeks gestation and later in pregnancy, because nsaids, including naproxen, can cause premature closure of the fetal ductus arteriosus (see data ). oligohydramnios/neonatal renal impairment: if an nsaid is necessary at about 20 weeks gestation or later in pregnancy, limit the use to the lowest effective dose and shortest duration possible. if naproxen treatment extends beyond 48 hours, consider monitoring with ultrasound for oligohydramnios. if oligohydramnios occurs, discontinue naproxen, and follow up according to clinical practice (see data ). labor or delivery there are no studies on the effects of naproxen during labor or delivery. in animal studies, nsaids, including naproxen, inhibit prostaglandin synthesis, cause delayed parturition, and increase the incidence of stillbirth. data human data there is some evidence to suggest that when inhibitors of prostaglandin synthesis are used to delay preterm labor, there is an increased risk of neonatal complications such as necrotizing enterocolitis, patent ductus arteriosus, and intracranial hemorrhage. naproxen treatment given in late pregnancy to delay parturition has been associated with persistent pulmonary hypertension, renal dysfunction, and abnormal prostaglandin e levels in preterm infants. because of the known effects of nonsteroidal anti-inflammatory drugs on the fetal cardiovascular system (closure of ductus arteriosus), use during pregnancy (particularly starting at 30-weeks of gestation, or third trimester) should be avoided. premature closure of fetal ductus arteriosus: published literature reports that the use of nsaids at about 30 weeks of gestation and later in pregnancy may cause premature closure of the fetal ductus arteriosus. oligohydramnios/neonatal renal impairment: published studies and postmarketing reports describe maternal nsaid use at about 20 weeks gestation or later in pregnancy associated with fetal renal dysfunction leading to oligohydramnios, and in some cases, neonatal renal impairment. these adverse outcomes are seen, on average, after days to weeks of treatment, although oligohydramnios has been infrequently reported as soon as 48 hours after nsaid initiation. in many cases, but not all, the decrease in amniotic fluid was transient and reversible with cessation of the drug. there have been a limited number of case reports of maternal nsaid use and neonatal renal dysfunction without oligohydramnios, some of which were irreversible. some cases of neonatal renal dysfunction required treatment with invasive procedures, such as exchange transfusion or dialysis. methodological limitations of these postmarketing studies and reports include lack of a control group; limited information regarding dose, duration, and timing of drug exposure; and concomitant use of other medications. these limitations preclude establishing a reliable estimate of the risk of adverse fetal and neonatal outcomes with maternal nsaid use. because the published safety data on neonatal outcomes involved mostly preterm infants, the generalizability of certain reported risks to the full-term infant exposed to nsaids through maternal use is uncertain. animal data reproduction studies have been performed in rats at 20 mg/kg/day (0.13 times the maximum recommended human daily dose of 1500 mg/day based on body surface area comparison), rabbits at 20 mg/kg/day (0.26 times the maximum recommended human daily dose, based on body surface area comparison), and mice at 170 mg/kg/day (0.6 times the maximum recommended human daily dose based on body surface area comparison) with no evidence of impaired fertility or harm to the fetus due to the drug. risk summary the naproxen anion has been found in the milk of lactating women at a concentration equivalent to approximately 1% of maximum naproxen concentration in plasma. the developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for naproxen and any potential adverse effects on the breastfed infant from the naproxen or from the underlying maternal condition. infertility  females based on the mechanism of action, the use of prostaglandin-mediated nsaids, including naproxen may delay or prevent rupture of ovarian follicles, which has been associated with reversible infertility in some women. published animal studies have shown that administration of prostaglandin synthesis inhibitors has the potential to disrupt prostaglandin-mediated follicular rupture required for ovulation. small studies in women treated with nsaids have also shown a reversible delay in ovulation. consider withdrawal of nsaids, including naproxen, in women who have difficulties conceiving or who are undergoing investigation of infertility. safety and effectiveness in pediatric patients below the age of 2 years have not been established. pediatric dosing recommendations for polyarticular juvenile idiopathic arthritis are based on well-controlled studies [see dosage and administration (2)]. there are no adequate effectiveness or dose-response data for other pediatric conditions, but the experience in polyarticular juvenile idiopathic arthritis and other use experience have established that single doses of 2.5 to 5 mg/kg as naproxen suspension, with total daily dose not exceeding 15 mg/kg/day, are well tolerated in pediatric patients over 2 years of age.  the hepatic and renal tolerability of long-term naproxen administration was studied in two double-blind clinical trials involving 586 patients. of the patients studied, 98 patients were age 65 and older and 10 of the 98 patients were age 75 and older. naproxen was administered at doses of 375 mg twice daily or 750 mg twice daily for up to 6 months. transient abnormalities of laboratory tests assessing hepatic and renal function were noted in some patients, although there were no differences noted in the occurrence of abnormal values among different age groups. elderly patients, compared to younger patients, are at greater risk for nsaid-associated serious cardiovascular, gastrointestinal, and/or renal adverse reactions. if the anticipated benefit for the elderly patient outweighs these potential risks, start dosing at the low end of the dosing range, and monitor patients for adverse effects [see warnings and precautions (5.1, 5.2, 5.3, 5.6, 5.14)]. studies indicate that although total plasma concentration of naproxen is unchanged, the unbound plasma fraction of naproxen is increased in the elderly. the clinical significance of this finding is unclear, although it is possible that the increase in free naproxen concentration could be associated with an increase in the rate of adverse events per a given dosage in some elderly patients. caution is advised when high doses are required and some adjustment of dosage may be required in elderly patients. as with other drugs used in the elderly, it is prudent to use the lowest effective dose. experience indicates that geriatric patients may be particularly sensitive to certain adverse effects of nonsteroidal anti-inflammatory drugs. elderly or debilitated patients seem to tolerate peptic ulceration or bleeding less well when these events do occur. most spontaneous reports of fatal gi events are in the geriatric population [see warnings and precautions (5.2)]. naproxen is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function [see clinical pharmacology (12.3) ] . geriatric patients may be at a greater risk for the development of a form of renal toxicity precipitated by reduced prostaglandin formation during administration of nonsteroidal anti-inflammatory drugs [see warnings and precautions (5.6) ].  caution is advised when high doses are required and some adjustment of dosage may be required in these patients. it is prudent to use the lowest effective dose [see clinical pharmacology (12.3)]. naproxen-containing products are not recommended for use in patients with moderate to severe and severe renal impairment (creatinine clearance <30 ml/min) [see warnings and precautions (5.6), clinical pharmacology (12.3)].

ARIPIPRAZOLE solution アメリカ合衆国 - 英語 - NLM (National Library of Medicine)

aripiprazole solution

aurobindo pharma limited - aripiprazole (unii: 82vfr53i78) (aripiprazole - unii:82vfr53i78) - aripiprazole oral solution is indicated for the treatment of: - schizophrenia [see clinical studies (14.1)] - acute treatment of manic and mixed episodes associated with bipolar i disorder [see clinical studies (14.2)] - irritability associated with autistic disorder  [see clinical studies (14.4)] - treatment of tourette’s disorder [see clinical studies (14.5)] aripiprazole oral solution is contraindicated in patients with a history of a hypersensitivity reaction to aripiprazole. reactions have ranged from pruritus/urticaria to anaphylaxis [see adverse reactions (6.2)]. pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to atypical antipsychotics, including aripiprazole, during pregnancy. healthcare providers are encouraged to register patients by contacting the national pregnancy registry for atypical antipsychotics at 1-866-961-2388 or visit http://womensmentalhealth.org/clinical-and-research-programs/pregnancyregistry/. risk summary neonates exposed to antipsychotic drugs, including aripiprazole, during the third trimester of pregnancy are at risk for extrapyramidal and/or withdrawal symptoms following delivery (see clinical considerations) . overall available data from published epidemiologic studies of pregnant women exposed to aripiprazole have not established a drug-associated risk of major birth defects, miscarriage, or adverse maternal or fetal outcomes (see data) . there are risks to the mother associated with untreated schizophrenia, or bipolar i disorder, and with exposure to antipsychotics, including aripiprazole, during pregnancy (see clinical considerations). in animal reproduction studies, oral and intravenous aripiprazole administration during organogenesis in rats and/or rabbits at doses 10 and 19 times, respectively, the maximum recommended human dose (mrhd) of 30 mg/day based on mg/m2 body surface area, produced fetal death, decreased fetal weight, undescended testicles, delayed skeletal ossification, skeletal abnormalities, and diaphragmatic hernia. oral and intravenous aripiprazole administration during the pre- and post-natal period in rats at doses 10 times the mrhd based on mg/m2 body surface area, produced prolonged gestation, stillbirths, decreased pup weight, and decreased pup survival (see data) . the estimated background risk of major birth defects and miscarriage for the indicated population is unknown. all pregnancies have a background risk of birth defect, loss, or other adverse outcomes. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively. clinical considerations disease-associated maternal and/or embryo/fetal risk there is a risk to the mother from untreated schizophrenia or bipolar i disorder, including increased risk of relapse, hospitalization, and suicide. schizophrenia and bipolar i disorder are associated with increased adverse perinatal outcomes, including preterm birth. it is not known if this is a direct result of the illness or other comorbid factors. a prospective, longitudinal study followed 201 pregnant women with a history of major depressive disorder who were euthymic and taking antidepressants at the beginning of pregnancy. the women who discontinued antidepressants during pregnancy were more likely to experience a relapse of major depression than women who continued antidepressants. consider the risk of untreated depression when discontinuing or changing treatment with antidepressant medication during pregnancy and postpartum. fetal/neonatal adverse reactions extrapyramidal and/or withdrawal symptoms, including agitation, hypertonia, hypotonia, tremor, somnolence, respiratory distress, and feeding disorder have been reported in neonates who were exposed to antipsychotic drugs (including aripiprazole) during the third trimester of pregnancy. these symptoms have varied in severity. monitor neonates for extrapyramidal and/or withdrawal symptoms, and manage symptoms appropriately. some neonates recovered within hours or days without specific treatment; others required prolonged hospitalization. data human data   published data from observational studies, birth registries, and case reports on the use of atypical antipsychotics during pregnancy do not report a clear association with antipsychotics and major birth defects. a retrospective study from a medicaid database of 9258 women exposed to antipsychotics during pregnancy did not indicate an overall increased risk for major birth defects.  animal data in animal studies, aripiprazole demonstrated developmental toxicity, including possible teratogenic effects in rats and rabbits. in pregnant rats treated orally with aripiprazole during organogenesis at doses of 3, 10, and 30 mg/kg/day, which are approximately 1, 3 and 10 times the mrhd of 30 mg/day based on mg/m2 body surface area, a slight prolongation of gestation and delay in fetal development, as evidenced by decreased fetal weight and undescended testes, were observed at 10 times the mrhd. delayed skeletal ossification was observed at 3 and 10 times the mrhd. delivered offspring had increased incidences of hepatodiaphragmatic nodules and diaphragmatic hernia were observed at 10 times the mrhd (the other dose groups were not examined for these findings). postnatally, delayed vaginal opening was seen at 3 and 10 times the mrhd. impaired reproductive performance (decreased fertility rate, corpora lutea, implants, live fetuses, and increased post-implantation loss, likely mediated through effects on female offspring) were observed at 10 times the mrhd; however, there was no evidence to suggest that these developmental effects were secondary to maternal toxicity. in pregnant rats injected intravenously with aripiprazole during organogenesis at doses of 3, 9, and 27 mg/kg/day, which are 1, 3, and 9 times the mrhd of 30 mg/day based on mg/m2 body surface area, decreased fetal weight and delayed skeletal ossification were observed at 9 times the mrhd; this dose also caused maternal toxicity. in pregnant rabbits treated orally with aripiprazole during organogenesis at doses of 10, 30, and 100 mg/kg/day which are 6, 19, and 65 times the mrhd of 30 mg/day based on mg/m2 body surface area, decreased maternal food consumption, and increased abortions as well as increased fetal mortality were observed at 65 times the mrhd. decreased fetal weight and increased incidence of fused sternebrae were observed at 19 and 65 times the mrhd. in pregnant rabbits injected intravenously with aripiprazole during organogenesis at doses of 3, 10, and 30 mg/kg/day, which are 2, 6, and 19 times the mrhd of 30 mg/day based on mg/m2 body surface area, decreased fetal weight, increased fetal abnormalities (primarily skeletal), and decreased fetal skeletal ossification were observed at 19 times the mrhd; this dose also caused maternal toxicity. the fetal no-effect dose was 10 mg/kg/day, which is 6 times the mrhd. in rats treated orally with aripiprazole peri- and post-natally from gestation day 17 through postpartum day 21 at doses of 3, 10, and 30 mg/kg/day which are 1, 3, and 10 times the mrhd of 30 mg/day based on mg/m2 body surface area slight maternal toxicity and slightly prolonged gestation were observed at 10 times the mrhd. an increase in stillbirths and, decreases in pup weight (persisting into adulthood) and survival were also seen at this dose. in rats injected intravenously with aripiprazole from gestation day 6 through lactation day 20 at doses of 3, 8, and 20 mg/kg/day, which are 1, 3, and 6 times the mrhd of 30 mg/day based on mg/m2 body surface area, increased stillbirths were observed at 3 and 6 times the mrhd; and decreases in early postnatal pup weight and survival were observed at 6 times the mrhd; these doses also caused some maternal toxicity. there were no effects on postnatal behavioral and reproductive development. risk summary limited data from published literature report the presence of aripiprazole in human breast milk, at relative infant doses ranging between 0.7% to 8.3% of the maternal weight-adjusted dosage. there are reports of poor weight gain in breastfed infants exposed to aripiprazole and reports of inadequate milk supply in lactating women taking aripiprazole. the development and health benefits of breastfeeding should be considered along with the mother’s clinical need for aripiprazole and any potential adverse effects on the breastfed infant from aripiprazole or from the underlying maternal condition. safety and effectiveness in pediatric patients with major depressive disorder have not been established. the pharmacokinetics of aripiprazole and dehydro-aripiprazole in pediatric patients, 10 to 17 years of age, were similar to those in adults after correcting for the differences in body weight [see clinical pharmacology (12.3)]. schizophrenia safety and effectiveness in pediatric patients with schizophrenia were established in a 6-week, placebo-controlled clinical trial in 202 pediatric patients aged 13 to 17 years [see dosage and administration (2.1), adverse reactions (6.1), and clinical studies (14.1)]. although maintenance efficacy in pediatric patients has not been systematically evaluated, maintenance efficacy can be extrapolated from adult data along with comparisons of aripiprazole pharmacokinetic parameters in adult and pediatric patients. bipolar i disorder safety and effectiveness in pediatric patients with bipolar mania were established in a 4-week, placebo-controlled clinical trial in 197 pediatric patients aged 10 to 17 years [see dosage and administration (2.2), adverse reactions (6.1) , and clinical studies (14.2)] . although maintenance efficacy in pediatric patients has not been systematically evaluated, maintenance efficacy can be extrapolated from adult data along with comparisons of aripiprazole pharmacokinetic parameters in adult and pediatric patients. the efficacy of adjunctive aripiprazole with concomitant lithium or valproate in the treatment of manic or mixed episodes in pediatric patients has not been systematically evaluated. however, such efficacy and lack of pharmacokinetic interaction between aripiprazole and lithium or valproate can be extrapolated from adult data, along with comparisons of aripiprazole pharmacokinetic parameters in adult and pediatric patients. irritability associated with autistic disorder safety and effectiveness in pediatric patients demonstrating irritability associated with autistic disorder were established in two 8-week, placebo-controlled clinical trials in 212 pediatric patients aged 6 to 17 years [see indications and usage (1), dosage and administration (2.4) , adverse reactions (6.1) , and clinical studies (14.4) ] . a maintenance trial was conducted in pediatric patients (6 to 17 years of age) with irritability associated with autistic disorder. the first phase of this trial was an open-label, flexibly dosed (aripiprazole 2 to 15 mg/day) phase in which patients were stabilized (defined as > 25% improvement on the abc-i subscale, and a cgi-i rating of “much improved” or “very much improved”) on aripiprazole for 12 consecutive weeks. overall, 85 patients were stabilized and entered the second, 16-week, double-blind phase where they were randomized to either continue aripiprazole treatment or switch to placebo. in this trial, the efficacy of aripiprazole for the maintenance treatment of irritability associated with autistic disorder was not established. tourette’s disorder safety and effectiveness of aripiprazole in pediatric patients with tourette’s disorder were established in one 8-week (aged 7 to 17) and one 10-week trial (aged 6 to 18) in 194 pediatric patients [see dosage and administration (2.5) , adverse reactions (6.1) , and clinical studies (14.5) ] . maintenance efficacy in pediatric patients has not been systematically evaluated. juvenile animal studies aripiprazole in juvenile rats caused mortality, cns clinical signs, impaired memory and learning,  and  delayed  sexual  maturation when  administered at  oral  doses  of  10,  20, 40 mg/kg/day  from  weaning  (21  days  old)  through  maturity  (80  days   old).  at 40 mg/kg/day, mortality, decreased activity, splayed hind limbs, hunched posture, ataxia, tremors and other cns signs were observed in both genders. in addition, delayed sexual maturation was observed in males. at all doses and in a dose-dependent manner, impaired memory and learning, increased motor activity, and histopathology changes in the pituitary (atrophy), adrenals (adrenocortical hypertrophy), mammary glands (hyperplasia and increased secretion), and female reproductive organs (vaginal mucification, endometrial atrophy, decrease in ovarian corpora lutea) were observed. the changes in female reproductive organs were considered secondary to the increase in prolactin serum levels. a no observed adverse effect level (noael) could not be determined and, at the lowest tested dose of 10 mg/kg/day, there is no safety margin relative to the systemic exposures (auc0 to 24 ) for aripiprazole or its major active metabolite in adolescents at the maximum recommended pediatric dose of 15 mg/day. all drug-related effects were reversible after a 2-month recovery period, and most of the drug effects in juvenile rats were also observed in adult rats from previously conducted studies. aripiprazole in juvenile dogs (2 months old) caused cns clinical signs of tremors, hypoactivity, ataxia, recumbency and limited use of hind limbs when administered orally for 6 months at 3, 10, 30 mg/kg/day. mean body weight and weight gain were decreased up to 18% in females in all drug groups relative to control values. a noael could not be determined and, at the lowest tested dose of 3 mg/kg/day, there is no safety margin relative to the systemic exposures (auc0 to 24 ) for aripiprazole or its major active metabolite in adolescents at the maximum recommended pediatric dose of 15 mg/day. all drug-related effects were reversible after a 2-month recovery period. no dosage adjustment is recommended for elderly patients [see boxed warning, warnings and precautions (5.1), and clinical pharmacology (12.3)]. of the 13,543 patients treated with oral aripiprazole in clinical trials, 1,073 (8%) were ≥65 years old and 799 (6%) were ≥75 years old. placebo-controlled studies of oral aripiprazole in schizophrenia, bipolar mania, or major depressive disorder did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. aripiprazole is not approved for the treatment of patients with psychosis associated with alzheimer’s disease [see  boxed warning  and warnings and precautions (5.1) ]. dosage adjustment is recommended in known cyp2d6 poor metabolizers due to high aripiprazole concentrations. approximately 8% of caucasians and 3 to 8% of black/african americans cannot metabolize cyp2d6 substrates and are classified as poor metabolizers (pm) [see dosage and administration (2.7) and clinical pharmacology (12.3)]. no dosage adjustment for aripiprazole is required on the basis of a patient’s hepatic function (mild to severe hepatic impairment, child-pugh score between 5 and 15), or renal function (mild to severe renal impairment, glomerular filtration rate between 15 and 90 ml/minute) [see clinical pharmacology (12.3)]. no dosage adjustment for aripiprazole is required on the basis of a patient’s sex, race, or smoking status [see clinical pharmacology (12.3)]. aripiprazole is not a controlled substance. aripiprazole has not been systematically studied in humans for its potential for abuse, tolerance, or physical dependence. consequently, patients should be evaluated carefully for a history of drug abuse, and such patients should be observed closely for signs of aripiprazole misuse or abuse (e.g., development of tolerance, increases in dose, drug-seeking behavior). in physical dependence studies in monkeys, withdrawal symptoms were observed upon abrupt cessation of dosing. while the clinical trials did not reveal any tendency for any drug-seeking behavior, these observations were not systematic and it is not possible to predict on the basis of this limited experience the extent to which a cns-active drug will be misused, diverted, and/or abused once marketed.

ROFLUMILAST tablet アメリカ合衆国 - 英語 - NLM (National Library of Medicine)

roflumilast tablet

aurobindo pharma limited - roflumilast (unii: 0p6c6zop5u) (roflumilast - unii:0p6c6zop5u) - roflumilast tablets are indicated as a treatment to reduce the risk of copd exacerbations in patients with severe copd associated with chronic bronchitis and a history of exacerbations. limitations of use roflumilast tablets are not a bronchodilator and is not indicated for the relief of acute bronchospasm. roflumilast tablets 250 mcg is a starting dose, for the first 4 weeks of treatment only and is not the effective (therapeutic) dose. the use of roflumilast tablets are contraindicated in the following condition: moderate to severe liver impairment (child-pugh b or c) [see clinical pharmacology (12.3) and use in specific populations (8.6)] . risk summary there are no randomized clinical studies of roflumilast in pregnant women. in animal reproductive toxicity studies, roflumilast administered to pregnant rats and rabbits during the period of organogenesis produced no fetal structural abnormalities. the highest roflumilast dose in these studies was approximately 30 and 26 times, respectively, the maximu

RABEPRAZOLE SODIUM tablet, delayed release アメリカ合衆国 - 英語 - NLM (National Library of Medicine)

rabeprazole sodium tablet, delayed release

aurobindo pharma limited - rabeprazole sodium (unii: 3l36p16u4r) (rabeprazole - unii:32828355ll) - rabeprazole sodium 20 mg - rabeprazole sodium delayed-release tablets are indicated for short-term (4 to 8 weeks) treatment in the healing and symptomatic relief of erosive or ulcerative gastroesophageal reflux disease (gerd). for those patients who have not healed after 8 weeks of treatment, an additional 8-week course of rabeprazole sodium delayed-release tablets may be considered. rabeprazole sodium delayed-release tablets are indicated for maintaining healing and reduction in relapse rates of heartburn symptoms in patients with erosive or ulcerative gastroesophageal reflux disease (gerd maintenance). controlled studies do not extend beyond 12 months. rabeprazole sodium delayed-release tablets are indicated for the treatment of daytime and nighttime heartburn and other symptoms associated with gerd in adults for up to 4 weeks. rabeprazole sodium delayed-release tablets are indicated for short-term (up to four weeks) treatment in the healing and symptomatic relief of duodenal ulcers. most patients heal within four weeks. rabeprazole sodium delayed-release tablets, in combination with amoxicillin and clarithromycin as a three drug regimen, are indicated for the treatment of patients with h. pylori infection and duodenal ulcer disease (active or history within the past 5 years) to eradicate h. pylori . eradication of h. pylori has been shown to reduce the risk of duodenal ulcer recurrence. in patients who fail therapy, susceptibility testing should be done. if resistance to clarithromycin is demonstrated or susceptibility testing is not possible, alternative antimicrobial therapy should be instituted [see clinical pharmacology (12.2) and the full prescribing information for clarithromycin] . rabeprazole sodium delayed-release tablets are indicated for the long-term treatment of pathological hypersecretory conditions, including zollinger-ellison syndrome. rabeprazole sodium delayed-release tablets are indicated for the treatment of symptomatic gerd in adolescents 12 years of age and above for up to 8 weeks. - rabeprazole sodium delayed-release tablets are contraindicated in patients with known hypersensitivity to rabeprazole, substituted benzimidazoles, or to any component of the formulation. hypersensitivity reactions may include anaphylaxis, anaphylactic shock, angioedema, bronchospasm, acute tubulointerstitial nephritis, and urticaria [see warnings and precautions (5.3), adverse reactions (6)] . - ppis, including rabeprazole sodium delayed-release tablets, are contraindicated with rilpivirine-containing products [see drug interactions (7)] . - for information about contraindications of antibacterial agents (clarithromycin and amoxicillin) indicated in combination with rabeprazole sodium delayed-release tablets, refer to the contraindications section of their package inserts. risk summary there are no available human data on rabeprazole sodium delayed-release tablets use in pregnant women to inform the drug associated risk. the background risk of major birth defects and miscarriage for the indicated populations are unknown. however, the background risk in the u.s. general population of major birth defects is 2 to 4% and of miscarriage is 15 to 20% of clinically recognized pregnancies. no evidence of adverse developmental effects were seen in animal reproduction studies with rabeprazole administered during organogenesis at 13 and 8 times the human area under the plasma concentration-time curve (auc) at the recommended dose for gerd, in rats and rabbits, respectively [see data] . changes in bone morphology were observed in offspring of rats treated with oral doses of a different ppi through most of pregnancy and lactation. when maternal administration was confined to gestation only, there were no effects on bone physeal morphology in the offspring at any age [see data] . data animal data embryo-fetal developmental studies have been performed in rats during organogenesis at intravenous doses of rabeprazole up to 50 mg/kg/day (plasma auc of 11.8 mcg•hr/ml, about 13 times the human exposure at the recommended oral dose for gerd) and rabbits at intravenous doses up to   30 mg/kg/day (plasma auc of 7.3 mcg•hr/ml, about 8 times the human exposure at the recommended oral dose for gerd) and have revealed no evidence of harm to the fetus due to rabeprazole. administration of rabeprazole to rats in late gestation and during lactation at an oral dose of 400 mg/kg/day (about 195-times the human oral dose based on mg/m2 ) resulted in decreases in body weight gain of the pups. a pre- and postnatal developmental toxicity study in rats with additional endpoints to evaluate bone development was performed with a different ppi at about 3.4 to 57 times an oral human dose on a body surface area basis. decreased femur length, width and thickness of cortical bone, decreased thickness of the tibial growth plate, and minimal to mild bone marrow hypocellularity were noted at doses of this ppi equal to or greater than 3.4 times an oral human dose on a body surface area basis. physeal dysplasia in the femur was also observed in offspring after in utero and lactational exposure to the ppi at doses equal to or greater than 33.6 times an oral human dose on a body surface area basis. effects on maternal bone were observed in pregnant and lactating rats in a pre- and postnatal toxicity study when the ppi was administered at oral doses of 3.4 to 57 times an oral human dose on a body surface area basis. when rats were dosed from gestational day 7 through weaning on postnatal day 21, a statistically significant decrease in maternal femur weight of up to 14% (as compared to placebo treatment) was observed at doses equal to or greater than 33.6 times an oral human dose on a body surface area basis. a follow-up developmental toxicity study in rats with further time points to evaluate pup bone development from postnatal day 2 to adulthood was performed with a different ppi at oral doses of 280 mg/kg/day (about 68 times an oral human dose on a body surface area basis) where drug administration was from either gestational day 7 or gestational day 16 until parturition. when maternal administration was confined to gestation only, there were no effects on bone physeal morphology in the offspring at any age. risk summary lactation studies have not been conducted to assess the presence of rabeprazole in human milk, the effects of rabeprazole on the breastfed infant, or the effects of rabeprazole on milk production. rabeprazole is present in rat milk. the development and health benefits of breastfeeding should be considered along with the mother’s clinical need for rabeprazole sodium delayed-release tablets and any potential adverse effects on the breastfed infant from rabeprazole sodium delayed-release tablets or from the underlying maternal condition. the safety and effectiveness of rabeprazole sodium delayed-release tablets have been established in pediatric patients for adolescent patients 12 years of age and older for the treatment of symptomatic gerd. use of rabeprazole sodium delayed-release tablets in this age group is supported by adequate and well controlled studies in adults and a multicenter, randomized, open-label, parallel-group study in 111 adolescent patients 12 to 16 years of age. patients had a clinical diagnosis of symptomatic gerd, or suspected or endoscopically proven gerd and were randomized to either 10 mg or 20 mg once daily for up to 8 weeks for the evaluation of safety and efficacy. the adverse reaction profile in adolescent patients was similar to that of adults. the related reported adverse reactions that occurred in ≥2% of patients were headache (5%) and nausea (2%). there were no adverse reactions reported in these studies that were not previously observed in adults. the safety and effectiveness of rabeprazole sodium delayed-release tablets have not been established in pediatric patients for: - healing of erosive or ulcerative gerd - maintenance of healing of erosive or ulcerative gerd - treatment of symptomatic gerd - healing of duodenal ulcers - helicobacter pylori eradication to reduce the risk of duodenal ulcer recurrence - treatment of pathological hypersecretory conditions, including zollinger-ellison syndrome rabeprazole sodium delayed-release 20 mg tablets are not recommended for use in pediatric patients less than 12 years of age because the tablet strength exceeds the recommended dose for these patients [see dosage and administration (2) ]. for pediatric patients 1 year to less than 12 years of age consider another rabeprazole formulation. the safety and effectiveness of a different dosage form and dosage strength of rabeprazole has been established in pediatric patients 1 to 11 years for the treatment of gerd. juvenile animal data studies in juvenile and young adult rats and dogs were performed. in juvenile animal studies rabeprazole sodium was administered orally to rats for up to 5 weeks and to dogs for up to 13 weeks, each commencing on day 7 post-partum and followed by a 13-week recovery period. rats were dosed at 5, 25, or 150 mg/kg/day and dogs were dosed at 3, 10, or 30 mg/kg/day. the data from these studies were comparable to those reported for young adult animals. pharmacologically mediated changes, including increased serum gastrin levels and stomach changes, were observed at all dose levels in both rats and dogs. these observations were reversible over the 13-week recovery periods. although body weights and/or crown-rump lengths were minimally decreased during dosing, no effects on the development parameters were noted in either juvenile rats or dogs. when juvenile animals were treated for 28 days with a different ppi at doses equal to or greater than 34 times the daily oral human dose on a body surface area basis, overall growth was affected and treatment-related decreases in body weight (approximately 14%) and body weight gain, and decreases in femur weight and femur length were observed. of the total number of subjects (n=2009) in clinical studies of rabeprazole sodium delayed-release tablets, 19% were 65 years and over, while 4% were 75 years and over. no overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. administration of rabeprazole sodium delayed-release tablets to patients with mild to moderate hepatic impairment (child-pugh class a and b, respectively) resulted in increased exposure and decreased elimination [see clinical pharmacology (12.3)] . no dosage adjustment is necessary in patients with mild to moderate hepatic impairment. there is no information in patients with severe hepatic impairment (child-pugh class c). avoid use of rabeprazole sodium delayed-release tablets in patients with severe hepatic impairment; however, if treatment is necessary, monitor patients for adverse reactions [see warnings and precautions (5), adverse reactions (6)] .

ESCITALOPRAM OXALATE solution アメリカ合衆国 - 英語 - NLM (National Library of Medicine)

escitalopram oxalate solution

aurobindo pharma limited - escitalopram oxalate (unii: 5u85dbw7lo) (escitalopram - unii:4o4s742any) - escitalopram 5 mg in 5 ml - escitalopram oral solution is indicated for the treatment of: - major depressive disorder (mdd) in adults and pediatric patients 12 years of age and older. - generalized anxiety disorder (gad) in adults. additional pediatric use information is approved for abbvie inc.’s lexapro (escitalopram) oral solution. however, due to abbvie inc.’s marketing exclusivity rights, this drug product is not labeled with that information. escitalopram oral solution is contraindicated in patients: - taking maois with escitalopram oral solution or within 14 days of stopping treatment with escitalopram oral solution because of an increased risk of serotonin syndrome. the use of escitalopram oral solution within 14 days of stopping an maoi intended to treat psychiatric disorders is also contraindicated [see dosage and administration (2.7), and warnings and precautions (5.2)] . starting escitalopram oral solution in a patient who is being treated with maois such as linezolid or intravenous methylene blue is also contraindicated because of an increased risk of serotonin syndrome [see dosage and administration (2.6), and warnings and precautions (5.2)]. - taking pimozide [see drug interactions (7)] . - with a hypersensitivity to escitalopram or citalopram or any of the inactive ingredients in escitalopram oral solution. pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to antidepressants during pregnancy. healthcare providers are encouraged to register patients by calling the national pregnancy registry for antidepressants at 1-844-405-6185 or visiting online at https://womensmentalhealth.org/clnical-and-research-programs/pregnancyregistry/antidepressants/ risk summary based on data from published observational studies, exposure to ssris, particularly in the month before delivery, has been associated with a less than 2-fold increase in the risk of postpartum hemorrhage [see warnings and precautions (5.7) and clinical considerations]. available data from published epidemiologic studies and postmarketing reports have not established an increased risk of major birth defects or miscarriage. there are risks of persistent pulmonary hypertension of the newborn (pphn) (see data) and poor neonatal adaptation (see clinical considerations) with exposure to selective serotonin reuptake inhibitors (ssris), including escitalopram oral solution, during pregnancy. there are risks associated with untreated depression in pregnancy (see clinical considerations). in animal reproduction studies, both escitalopram and racemic citalopram have been shown to have adverse effects on embryo/fetal and postnatal development, including fetal structural abnormalities, when administered at doses greater than human therapeutic doses (see data) . the estimated background risk of major birth defects and miscarriage for the indicated population is unknown. all pregnancies have a background risk of birth defect, loss, or other adverse outcomes. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in the clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively. clinical considerations disease-associated maternal risk and/or embryo/fetal risk women who discontinue antidepressants are more likely to experience a relapse of major depression than women who continue antidepressants. this finding is from a prospective longitudinal study of 201 pregnant women with a history of major depression, who were euthymic and taking antidepressants at the beginning of pregnancy. consider the risk of untreated depression when discontinuing or changing treatment with antidepressant medication during pregnancy and postpartum. maternal adverse reactions   use of escitalopram oral solution in the month before delivery may be associated with an increased risk of postpartum hemorrhage [see warnings and precautions (5.7)] .   fetal/neonatal adverse reactions neonates exposed to ssris or snris, including escitalopram oral solution, late in third trimester have developed complications requiring prolonged hospitalization, respiratory support, and tube feeding. such complications can arise immediately upon delivery. reported clinical findings have included respiratory distress, cyanosis, apnea, seizures, temperature instability, feeding difficulty, vomiting, hypoglycemia, hypotonia, hypertonia, hyperreflexia, tremor, jitteriness, irritability, and constant crying. these features are consistent with either a direct toxic effect of ssris and snris or, possibly, a drug discontinuation syndrome. it should be noted that, in some cases, the clinical picture is consistent with serotonin syndrome [see warnings and precautions (5.2)]. data human data exposure to ssris, particularly later in pregnancy, may increase the risk for pphn. pphn occurs in 1 to 2 per 1000 live births in the general populations and is associated with substantial neonatal morbidity and mortality. animal data in a rat embryo/fetal development study, oral administration of escitalopram (56, 112, or 150 mg/kg/day) to pregnant animals during the period of organogenesis resulted in decreased fetal body weight and associated delays in ossification at the two higher doses [approximately ≥ 55 times the maximum recommended human dose (mrhd) of 20 mg/day on a mg/m2 basis]. maternal toxicity (clinical signs and decreased body weight gain and food consumption), mild at 56 mg/kg/day, was present at all dose levels. the developmental no-effect dose of 56 mg/kg/day is approximately 27 times the mrhd of 20 mg on a mg/m2 basis. no malformations were observed at any of the doses tested (as high as 73 times the mrhd on a mg/m2 basis). when female rats were treated with escitalopram (6, 12, 24, or 48 mg/kg/day) during pregnancy and through weaning, slightly increased offspring mortality and growth retardation were noted at 48 mg/kg/day which is approximately 23 times the mrhd of 20 mg on a mg/m2 basis. slight maternal toxicity (clinical signs and decreased body weight gain and food consumption) was seen at this dose. slightly increased offspring mortality was also seen at 24 mg/kg/day. the no-effect dose was 12 mg/kg/day which is approximately 6 times the mrhd of 20 mg on a mg/m2 basis. in two rat embryo/fetal development studies, oral administration of racemic citalopram (32, 56, or 112 mg/kg/day) to pregnant animals during the period of organogenesis resulted in decreased embryo/fetal growth and survival and an increased incidence of fetal abnormalities (including cardiovascular and skeletal defects) at the high dose, which is approximately 18 times the mrhd of 60 mg/day on a mg/m2 basis. this dose was also associated with maternal toxicity (clinical signs, decreased body weight gain). the developmental no-effect dose was 56 mg/kg/day is approximately 9 times the mrhd on a mg/m2 basis. in a rabbit study, no adverse effects on embryo/fetal development were observed at doses of racemic citalopram of up to 16 mg/kg/day, or approximately 5 times the mrhd on a mg/m2 basis. thus, developmental effects of racemic citalopram were observed at a maternally toxic dose in the rat and were not observed in the rabbit. when female rats were treated with racemic citalopram (4.8, 12.8, or 32 mg/kg/day) from late gestation through weaning, increased offspring mortality during the first 4 days after birth and persistent offspring growth retardation were observed at the highest dose, which is approximately 5 times the mrhd of 60 mg on a mg/m2 basis. the no-effect dose was 12.8 mg/kg/day is approximately 2 times the mrhd on a mg/m2 basis. similar effects on offspring mortality and growth were seen when dams were treated throughout gestation and early lactation at doses ≥ 24 mg/kg/day, approximately 4 times the mrhd on a mg/m2 basis. a no-effect dose was not determined in that study. risk summary data from the published literature report the presence of escitalopram and desmethylescitalopram in human milk (see data) . there are reports of excessive sedation, restlessness, agitation, poor feeding and poor weight gain in infants exposed to escitalopram, through breast milk (see clinical considerations) . there are no data on the effects of escitalopram or its metabolites on milk production. the developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for escitalopram oral solution and any potential adverse effects on the breastfed child from escitalopram oral solution or from the underlying maternal condition. clinical considerations infants exposed to escitalopram oral solution should be monitored for excess sedation, restlessness, agitation, poor feeding and poor weight gain. data a study of 8 nursing mothers on escitalopram with daily doses of 10 to 20 mg/day showed that exclusively breast-fed infants receive approximately 3.9% of the maternal weight-adjusted dose of escitalopram and 1.7% of the maternal weight-adjusted dose of desmethylcitalopram. major depressive disorder the safety and effectiveness of escitalopram oral solution for the treatment of major depressive disorder have been established in pediatric patients 12 years of age and older. use of escitalopram oral solution for this indication is supported by evidence from adequate and well-controlled studies in adults with additional evidence from an 8-week, flexible-dose, placebo-controlled study that compared escitalopram oral solution 10 mg to 20 mg once daily to placebo in pediatric patients 12 to 17 years of age with major depressive disorder [see clinical studies (14.1)] . the safety of escitalopram oral solution was similar to adult patients with mdd [see adverse reactions (6.1)] . the safety and effectiveness of escitalopram oral solution for the treatment of major depressive disorder have not been established in pediatric patients younger than 12 years of age. in a 24-week, open- label safety study in 118 pediatric patient (aged 7 to 11 years) who had major depressive disorder, the safety findings were consistent with the known safety and tolerability profile for escitalopram oral solution. generalized anxiety disorder the safety and effectiveness of escitalopram oral solution for the treatment of generalized anxiety disorder have not been established in pediatric patients younger than 7 years of age. antidepressants increase the risk of suicidal thoughts and behaviors in pediatric patients [see warnings and precautions (5.1)] . decreased appetite and weight loss have been observed in association with the use of ssris. consequently, regular monitoring of weight and growth should be performed in children and adolescents treated with an ssri such as escitalopram oral solution. juvenile animal toxicity data in a juvenile animal study, male and female rats were administered escitalopram at 5, 40, or 80 mg/kg/day by oral gavage from postnatal day (pnd) 21 to pnd 69. a delay in sexual maturation was observed in both males and females at ≥ 40 mg/kg/day with a no observed adverse effect level (noael) of 5 mg/kg/day. this noael was associated with plasma auc levels less than those measured at the maximum recommended dose (mrhd) in pediatrics (20 mg). however, there was no effect on reproductive function. increased motor activity (both ambulatory and fine movements) was observed in females prior to daily dosing at ≥ 40 mg/kg/day (3.5 times the mrhd based on auc levels). a reversible disruption of learning and memory function was observed in males at 80 mg/kg/day with a noael of 40 mg/kg/day, which was associated with an auc level 3.5 times those measured at the mrhd in pediatrics. there was no effect on learning and memory function in treated female rats. additional pediatric use information is approved for abbvie inc.’s lexapro (escitalopram) oral solution. however, due to abbvie inc.’s marketing exclusivity rights, this drug product is not labeled with that information. approximately 69 patients (6%) of the 1,144 patients receiving escitalopram in controlled trials of escitalopram oral solution in major depressive disorder and gad were 60 years of age or older [see clinical studies (14.1, 14.2)]. the number of elderly patients in these trials was insufficient to adequately assess for possible differential efficacy and safety measures on the basis of age. nevertheless, greater sensitivity of some elderly individuals to effects of escitalopram oral solution cannot be ruled out. in two pharmacokinetic studies, escitalopram half-life was increased by approximately 50% in subjects 65 years and older as compared to young subjects and cmax was unchanged [see clinical pharmacology (12.3)] . the recommended dosage of escitalopram oral solution for elderly patients is 10 mg daily [see dosage and administration (2.5)] . ssris, including escitalopram oral solution, have been associated with cases of clinically significant hyponatremia in elderly patients, who may be at greater risk for this adverse reaction [ see warnings and precautions (5.6)] . of 4,422 patients in clinical studies of racemic citalopram, 1,357 were 60 and over, 1,034 were 65 and over, and 457 were 75 and over. no overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the geriatric and younger patients, but again, greater sensitivity of some elderly individuals cannot be ruled out. increased citalopram exposure occurs in patients with hepatic impairment [see clinical pharmacology (12.3)] . the recommended dosage of escitalopram oral solution in patients with hepatic impairment is 10 mg daily [see dosage and administration (2.5)] . pharmacokinetics of escitalopram oral solution in patients with a creatinine clearance less than 20 ml/minute has not been evaluated. no dosage adjustment is necessary for patients with mild or moderate renal impairment [see dosage and administration (2.5), clinical pharmacology (12.3)] . physical and psychological dependence animal studies suggest that the abuse liability of racemic citalopram is low. escitalopram oral solution has not been systematically studied in humans for its potential for abuse, tolerance, or physical dependence. the premarketing clinical experience with escitalopram oral solution did not reveal any drug-seeking behavior. however, these observations were not systematic and it is not possible to predict on the basis of this limited experience the extent to which a cns-active drug will be misused, diverted, and/or abused once marketed. consequently, physicians should carefully evaluate escitalopram oral solution patients for history of drug abuse and follow such patients closely, observing them for signs of misuse or abuse (e.g., development of tolerance, incrementations of dose, drug-seeking behavior).